CRER JNG AND CODING GOIDE (FOR THE STRUCTURE INVENTORY AND APPRAISAL OF THE NATION'S BRIDGES
 JANUARY 1979

U.S. DEPARTMENT OF TRANSPORTATION/FEDERAL HIGHWAY ADMINISTRATION (

U.S. DEPARTMENT OF TRANSPORTATION

 FEDERAL HIGHWAY ADMINISTRATION WASHINGTON, D.C. 20590

Prepared by the
DESIGN \& INSPECTION BRANCH
BRIDGE DIVISION
WASHINGTON, D. C.

This Guide, which has been endorsed by the AASHTO Subcommittee for Bridqes and Structures, has been prepared for use by the States in recording and coding the data elements that will form a bridge inventory data base. By havinq a complete and thorough inventory, an accurate report can be made to the Congress of the number and state of the Nation's bridges, arranged in a manner that would best suit needs for future leqislation. It will also provide the data necessary for FHWA to produce Defense Bridges and Critical Highway Facilities reports.

Most of the identification and structural items should be available from the State highway and transportation departments. The coded items in this Guide are considered to be an inteqral part of the data base that can be used to meet several Federal reporting requirements, as well as a large part of States' needs. Reports submitted in connection with the Highway Bridge Replacement and Rehabilitation Program and the National Bridge Inspection Program also are related to this Guide. Obviously, it is intended that present data and future reports be developed using the bridge inventory data base.

The AASHTO Manual for Maintenance Inspection of Bridges (called AASHTO Bridge Manual in this Guide) discusses the various items of information that are to be recorded as part of original bridge reports. That manual and the Bridge Inspector's Training Manual discuss inspection procedures and the preparation of detailed reports about the structure components. These reports will be the basis for recording values for many of the data elements shown in the Guide, particularly those having to do with the condition or the appraisal ratings.

This Guide is based on the Structure Inventory and Appraisal Sheet (SI\&A Sheet), which is included. This form is intended to be a repository for the pertinent elements of information about an individual structure. Its use is optional, subject to the statements in the preceding paragraph of this Introduction. Any of the items shown may be requested from time to time and in a form similar to the SI\&A Sheet.

The use of this Guide is optional, i.e., each State may use its own code scheme. However, when data are requested, whether in tabular or in computer readable form, the format will be based on the codes in the Guide. A state choosing to use its own codes should provide for translation or conversion to those in the Guide. In other words, the States are responsible for having the capability to obtain, store, and report certain information about bridqes whether or not this Guide or the SI\&A Sheet is used. Any requests for submittals of these data by FHWA will be based on the definitions, explanations, and codes supplied in the Guide, the AASHTO Bridqe Manual, the Bridge Inspector's Training Manual, and the FHPM Vol. 6, Chapter 10, Section 2 - Defense Bridqes and Critical Highway Facilities Reports.

All items shall be coded right justified with leading zeros unless otherwise noted.

IDENTIFICATION CODE

Item 1-State code
The first two digits are the Federal Information Processing Standards (FIPS) code for States and the third digit is the FHWA region code.

State codes

Code
014
049
056
069
088
091 Connecticut
103
124
134
160
175
185
197
207
214
226
231
243
251
265
275
284
297
308
317
329
State
Alabama
Arizona
Arkansas
California
Colorado
Delaware
Florida
Georgia
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
-159
Nebraska 113
Nevada 721

Code
331 342 356 362
374
388
395
406
410
423
441
454
468
474
486
498
501
513
530
543
555
568
020
159

State

New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Alaska
Hawaii
Dist. of Columbia
Puerto Rico

Item 2-State Highway Department District
2 digits
The highway district in which the bridge is located should be represented by a two-digit code. Existing district numbers should be used where districts are identified by number. Where districts are identified by name, a code number should be assigned based on an alphabetical listing of the districts.

Item 3-County (Parish)
3 digits
Counties should be identified with the P IPS code scheme specified by the U. S. Census of Population and Housing - 1970 .

Cities and towns should be identified according to the instructions and sources noted above in Item 3. If the structure is not in a city or town, code all zeroes.

Item 5-Inventory Route
The inventory route number must be for the highway route being inventoried. This is desired even in the case of a minor, non-Federal-aid highway overpassing a Federal-aid highway.

If the route beneath the structure is on a Federal-aid system, is a defense route, or is otherwise important, the defense and route oriented items should be recorded in a separate record and coded with respect to the route beneath. The necessary items are Items 1, 3-20, 24, 27-29, 42, 43, and 47-29. Item 8 should, of course, be recorded and coded for both routes to allow the two sets of data to be cross referenced. If the structure overpassing the inventory route does not carry a highway, only the necessary items listed above should be recorded with respect to the inventory route. (First digit of Item 5 would then be coded a 2).

When two or more routes are concurrent, the highest of the hierarchy of svstems as shown in the second coded position below will be used. If the concurrent routes are of the same hierarchy level, the lowest numbered route will be used. The same applies to any situation where a structure goes over two or more routes.

It cannot be overemphasized that all route oriented data must aqree with the coding as to whether the inventory route is on or under the bridge as indicated by the first digit of Item 5 .

The first position (leftmost) will indicate if the route is carried by the structure or goes under it:

1 Route carried by structure
2 Route under structure
A through Z Multiple routes under structure (List Defense Routes first)

The second position shall identify the kind of highway:

```
1 Interstate hiqhway
2 U.S. numbered highway
3 State highway
4 County hiqhway
5 City street
6 Federal lands road
7 State lands road
8 Other (include toll roads not otherwise indicated)
```

Item 5 - Inventory Route (cont'd)
The next position should identify hiqhways that are designated as:
0 None of below
1 Mainline
2 Alternate
3 Bypass
4 Spur
5 Toll roads
6 Business
7 Ramp, Wye, Connector, etc.
8 Service and/or unclassified frontaqe road
9 Truck route
The route number should be right-justified in the next five positions (see example below).

The last position indicates the directional suffix to the route number when it is part of the route number.

0 Not applicable
1 North
2 East
3 South
4 West
However, in some cases, letters may be used with the route numbers as part of the route number and not to indicate direction. In such cases, the latter should be included in the five position route number field.

Examples:
Interstate 95, record 1 l 1000950 code 111000950
Interstate 70S, under
211000703
211000703
State Highway 104,
Spur, under
$234001040 \quad 234001040$
U.S. 30E Bypass, on

123000302123000302
City street, on
150000000150000000
Exist ramp from I-81, under
County Hiqhway on
Interstate 84 under
Interstate 495 on
State Hwy 120 (Defense Rte) under
State Hwy 130 under
217000810
217000810
$141001730 \quad 141001730$
$211000840 \quad 211000840$
$111004950 \quad 111004950$
A $31001200 \quad$ A31001200
B 32001300
B32001300

The information to be recorded for this item will be the name or names of the features intersected by the structure whether the features are over or under the structure. When one of the features intersected is another hiqhway, the signed number or name of the highway (e.g., I 81, US 51, SR 772, Mill Road) should appear first (leftmost) in the field. The names of any other features should follow, separated by a semicolon or a comma. Abbreviations should be used where necessary, but an effort should be made to keep them meaningful. This item should be left justified without trailing zeroes.

It is requested that a structure on a designated defense highway considered to be a critical facility, which is defined in FHPM Volume 6, Chapter 10, Section 2, be identified by an asterisk in the 25th position. A blank space will indicate a non-critical facility.

Item 7 - Facility Carried by Structure
18 positions
The facility being carried by this structure should be recorded and coded. For example, S to W Ramp, Ramp from I 495 to I 95, C\&O Railroad, Great Eastern Pipeline and others. This item should be left justified without trailing zeroes.

Item 8 - Structure Number $\quad 15$ positions
It is required that the official structure number be recorded. It is not necessary to code this number according to an arbitrary national standard. Each agency should code the structure number according to its own internal processing procedures. When recording and coding for this item and following items, any structure or structures with a closed median should be considered as one structure, not two.

The structure number must be unique for each bridqe within the State, and once established should not be changed.

One of the major problems with bridqe numbers has been the shifting of numbers left or right in the 15 spaces provided. Therefore, it is recommended that all 15 field positions be filled.

If the bridge numbering system is being developed, a uniform number format is suggested as follows:

The first 3 diqits - County Code
The next 5 digits - Route Number
The next 2 digits - Highway System Code
The next 5 digits - A semi-sequentially ordered number starting after the route crosses the county line and increasing as the milepost increases within the county limits. Bridqes that are on the county line should be referenced to the preceding county, the exception being when the county line and the State line are the same.

This item will contain a narrative description of the bridge
Location. It is recommended that the location be keyed to a distinguishable feature on an official highway department map. Examples are: road junctions and topographical features. This item should be left justified without trailing zeros.

Item 10 - Inventory Route, Minimum Vertical clearance 4 digits
Vertical clearances should be reported and coded in feet and inches. The minimum clearances for a 10 -foot width of the pavement ox traveled part of the roadway where the clearance is the greatest should be recorded. For structures having multiple openings, clearances for each opening should be recorded, but only the maximum of the minimum clearances for the two or more openings chould be coded regardless of the direction of travel. this would be the practical maximum clearance when no restriction exists, code "9999".

Item 11 - Milepoint $\quad 5$ digits
If a milepoint location reference system is being used in the State, the milepoint location of the structure should be recorded and coded. The milepoint will refer to the oeginning (or other point the state uses) of the bridge in the direction of increasing mileage. code a 5 -digit number to represent the milepoint to hundredths of a mile. Code all zeros if a milepoint location cannot be determined or is not appropriate.

If the milepoint location of the structure is at the beginning of the route mileage, code with a nominal value of ooool rather than 00000.

Item 12 - Road Section Number
5 positions
If the bridge is on a designated defense highway, record and code the 5 character road section number that has been assigned in accordance with FHPM 6-10-2. The number should be right justified in the first 4 positions of the field as shown in the examples below. The 5 th position should be left blank except when letter suffix is used. For a bridge which is not on a defense highway, the item is coded with 4 zeros, left justified.

Examole:

Road Section Number	Coce
5	0005
15	0015
125 A	0125 A
1245	1245
none	0000

This item should be coded for all structures included in the inventory data base. The codes given below should be used to represent additional information describing the function of the bridge with respect to the route identified in Item 5. The order of the codes shown also is the hierarchy of their importance. This means that if two codes apply to a structure, the first of the codes (reading down the list) will be shown in the first position and the next one in the second position. If a second code does not apply, the second position should be left blank.
(Blank) When none of the following codes apply for the first or second position or both, the first or second position or both will be blank.

D Where the structure carries a highway that is designated as a defense highway and goes over a defense highway.

P For situations where separate structures carry two roadways in two directions of travel. The structure carrying the roadway in the direction of inventory (for defense highway, this is west to east and south to north) will be considered the first of the parallel bridges and the left position of the field for this structure will be left blank. The code "p" will be used for the structure carrying the opposite roadway.

T For temporary structures erected for the purpose of carrying traffic pending or during the repair or replacement of an old structure.

The following conditions are considered to be in the temporary bridge classification and should be so identified with a " T ".
a. Bridges shored up, including additional temporary supports.
b. Temporary repairs made to keep a bridge open.
C. Bailey bridges.

Examples:

Code
(Blank) (Blank) $=$ 1. Permanent bridge carrying two-way traffic.
or 2 a Permanent "L" (left) or "R" (right) bridge with no parallel bridge.
or 3. Permanent " R " bridge of a pair of Inventory Route bridges.
(Blank) $T=$ Temporary "R" bridge of a pair of Inventory Route bridges.

Item 13 - Bridqe Description (cont'd)

```
P(Blank) = Permanent "L" bridge of a pair of Inventory Route
    bridges.
PT = Temporary "L" bridge of a pair of Inventory Route
        bridges.
D(Blank) = Defense highway over a Defense highway, permanent
    bridge with two-way traffic.
        DT = Defense highway over a Defense highway, temporary
        bridge with two-way traffic.
        DP = Defense highway over a Defense highway, permanent
        "L" bridge of a pair of Inventory Route bridges.
```

$T(B l a n k)=1$. Temporary bridge carrying two-way traffic.
or 2. Temporary "L" or "R" bridge with no parallel bridge.
Item 14 - Defense Milepoint
4 digits
If the bridge is on a defense highway, record and code the number
of miles to the nearest hundredth that the bridge is from the
beginning of the defense road section (Item 12). If the bridge
is not on a defense highway, code all zeros. If the defense
milepoint is at the beginning of a defense section length, code
with a nominal value of 0001 rather than 0000 .
Item 15 - Defense Section Length $\quad 3$ digits

Record and code the length of the road section identified in Item 12 to the nearest tenth of a mile. See attachment 1 to FHPM 6-10-2. The length should be coded as a 3-digit number. If the bridge is not on a defense highway, code all zeros.

Item 16 - Latitude
5 digits
For bridges on defense highways, record and code the latitude of each in degrees, minutes, and tenths of minutes. The point of the coordinate may be the beginning of the bridge in the direction of inventory or any other point the State has chosen to use. If the bridge is not on a defense highway, a code of all zeros or the latitude is acceptable.

Example:

$$
35^{\circ} 27.3^{\prime}
$$

code 35273
Item 17 - Longitude

$$
6 \text { digits }
$$

Longitude should be recorded and coded as instructed in Item 16. Leading zeros should be coded where needed. If the bridge is not on a defense highway a code of all zeros or the longitude is acceptable.

Example:
$81^{\circ} 5.8^{\prime}$
code 081058

If the bridge is on a designated defense hiqhway, record and code the Physical Vulnerability of the bridae. The code is based on the type of structure. The item may be left blank if it is not applicable.

1	Timber trestle	6	Reinforced concrete - massive arch
2	Concrete girder or slab	7	Dam bridge
3	Steel girder	8	Culverts
4	Cantilever and truss	9	Tunnels
5	Suspension	0	No structure

Item 19 - Bypass, Detour Length
2 diqits
If a ground level bypass is available at the structure site for the route qiven in Item 5, record and code the detour length as zero.

If the bridge is one of twin bridges and is not at an interchange, code 01 to indicate that the other twin bridge can be used as a temporary bypass. In other cases, indicate that actual length to the nearest mile of the detour length. The detour length should represent the total additional travel for a vehicle which would result from closing of the bridge. The factor to consider when determining if a bypass is available at the site is the potential for moving vehicles, including military vehicles, around the structure. This is particularly true when the structure is in an interchange. For instance, a bypass likely would be available in the case of diamond interchanges, interchanges where there are service roads available, or other interchanges where the positioning and layout of the ramps is such that they could be used without difficulty to get around the structure. Code "99" for 99 miles or more.

The detour route will be established following allowable criteria determined by the qoverning authority. (Some authorities will not allow a designated detour over a road or bridqe of lesser "quality.")

Examples:

Diamond interchange, structure bypassable	code 00
Cloverleaf, not bypassable; 8-mile detour	08
Structure over river, $121-$ mile detour	99
Structure over highway, no interchanqe,	
bypassable at qround level	00

Item 20 - Toll
1 diqit
One of the codes given below should be used.
1 Toll bridqe. Tolls are paid specifially to use the structure.
2 On toll road. The structure carries a toll road, that is, tolls are paid to use the facility, which includes both the hiqhway and the structure. Trucks permitted.

Item 20-Toll (cont'd)
3 On free road. The structure is toll free and carries a toll free highway.
4 Toll parkway. Trucks not permitted on structures.

Item 21 - Custodian

The actual name of the custodian of the structure will be recorded. In the absence of a clear designation, the custodian will be the agency responsible for maintaining the structure. The codes below should be used to represent the type of agency that is the custodian.

1 State highway agency
2 Other State agency
3 County agency
4 City or other local agency
5 Federal agency
6 Railroad
7 Other private
8 Combination
9 Unknown
Item 22-owner
1 digit
The actual name of the owner of the bridge should be recorded on the inventory sheet. The codes shown above in Item 21 should be used here to indicate the owner.

Item 23 - Federal-Aid Project Number 7 digits
If Federal funds have been used for construction or reconstruction of this structure, the Federal-Aid project number of the most recent project should be recorded, if available. Coding is optional.

CLASSIFICATION
Item 24 - Highway System
2 digits
The information to be recorded and the codes to be used should be those shown below. The most applicable code should be used for any case that does not seem to have an appropriate code. A frontage road, for example, can be coded according to the system of the adjacent mainline roadway.

Code

System

01	Interstate, rural, open to traffic
02	Interstate, urban, open to traffic
03	Other FA primary, rural
04	Other FA primary, urban
05	FA secondary rural, State jurisdiction
07	FA secondary rural, local jurisdiction
09	Other State highways, rural (Non-FA)
10	Other State highways, urban (Non-FA)
11	Local rural roads
12	Local city streets
14	Federal-Aid Urban

Coding is optional. If coded, use the codes shown.
1 State
2 Federal domain
3 Toll
4 Other existing (which includes county and local jurisdiction)

Item 26 - Functional Classification 2 digits
Code the currently approved Functional Classification.

Urban Code
Population (1000) 5-25 25-50 50

11	21	41
12	22	42
13	23	43
14	24	44
15	25	45
-	-	-
-	$2 \overline{6}$	46

Functional classilication
Rural Code

Interstate
01
Other Freeway \& Expressway -
Other Principal Arterial 02
Minor Arterial 03
Collector -
Major 04
Minor 05
Local 06

STRUCTURE DATA

Item 27-Year Built
4 digits
Record and code both the year of construction and latest year of major reconstruction of the structure. Code the last two digits of the years in which construction or reconstruction of the structure was completed. A code of "00" in the first two positions should be used for years 1900 and earlier. If the year built is unknown, provide a best estimate.

Example:

| Built 1928 | No reconstruction | code 2800 |
| :--- | :--- | :--- | :--- |
| Built 1914 | Reconstruction 1960 | 1460 |
| Built 1898 | Reconstruction 1948, 1964 | 0064 |

Item 28 - Lanes on and Under the Structure
Code the number of through lanes being carried by the structure as a 2-digit number. Also, code the total number of through lanes being crossed over by the structure as a 2 -digit number. This will be a 4-digit field consisting of two subfields containing the two values. The codes should be right-justified with leading zeros in each of the subfields.

Highway lanes only are to be considered.
Example:

16	lanes on (double-level), 0 lanes under
8 lanes on, 12 lanes under (6 city streets)	1600
0812	

Code a 6-digit number that shows the average daily traffic volume for the route identified in Item 5. Make certain the units position is coded even if estimates of ADT are determined to tens or hundreds of vehicles, that is, appropriate trailing zeros should be coded.

The ADT shown must be compatible with the other items coded for the bridges.

Example: Twin bridges with an open median.
If Items 51 and 28 are coded for one bridge, then the ADT must be for one bridge and not the total for the route.

Examples: \quad Volume | 540 | Code | 000540 |
| ---: | ---: | ---: |
| | 15600 | 015600 |
| | 24000 | 024000 |

Item 30 - Year of Average Daily Traffic 2 digits
Record the year represented by the ADT above. Code the last 2 digits of the year so recorded.

Item 31 - Design Load $\quad 1$ digit
Use the codes below to indicate the live load for which the structure was designed. The numerical value of the railroad loading should be recorded on the form. classify any other loading, when feasible, using the nearest equivalent of the H loadings given below.

1	H 10
2	H 15
3	HS 15
4	H 20
5	HS 20
6	HS $20+$ Mod
7	Pedestrian
8	Railroad
9	Other (describe on recording form)
0	Unknown

Item 32-Approach Roadway Width

Code, to the nearest foot, a 3 -digit number that represents the normal width of the roadway approaching the structure. This dimension will include the widths of the shoulders. For closed median structures, the approach median width at the normal point should be included in this dimension. When there is a variation between the approaches at either end of the structure, record and code the most hazardous of the approach conditions.

Item 32 - Approach Roadway Width (cont'd)
Example:

Left Shoulder	Left Roadway	Median	Right Roadway	Right Shoulder	Code
4.0	-	-	16	6.0	026
6.0	-	-	36	12.0	054
12.0	48	30	48	12.0	150
10.0	24	16	36	10.0	096

The examples shown are for closed medians only. Regardless of whether the median is open or closed, the data recorded must be compatible with the other related route and bridge data.

Example: If Item 51 is for traffic in one direction only, then Items 28, 29, 32, etc., must be for traffic in one direction only.

One acceptable definition of a shoulder is:
A shoulder must be constructed and maintained flush with the adjacent through-traffic lane, and structurally adequate for all weather and traffic conditions.

Item 33-Bridge Median
1 digit
Indicate with a 1 -digit code if the median is non-existent, opened or closed. The median is closed when the area between the two roadways at the structure is bridged over and is capable of supporting traffic.

0	None
1	Open
2	Closed

Item 34 - Skew
2 digits
The skew angle is the angle between the centerline of a pier and a line normal to the roadway centerline. Normally the skew angle will be taken from the plans and it is to be recorded to the nearest degree. If no plans are available, the angle is to be field measured if possible. If the skew angle is 0°, it should be so coded. When the structure is on a curve or if the skew varies for some other reason, the average skew should be recorded, if reasonable. Otherwise, record a "99" to indicate a major variation in skews of substructure units. A 2-digit number should be coded.

Example:

Skew	Code
0°	00
10°	10
8°	08
29°	29

The appropriate box on the form should be checked to indicate whether or not the width of the structure varies. Generally, such variance will result from ramps converging with or diverging from the through lanes on the structure, but there may be other causes. Minor flares at ends of structures should be ignored. Code a " 1 " or "0" for Yes and No, respectively.

Item 36-Traffic Safety Features
4 digits
Bridge inspection shall include the recording of information on the following items so that the evaluation of their adequacy can be made. The data collected shall apply only to the route on the bridge.
(1) Bridge railings: Some factors that affect the proper functioning of bridge railing are height, material, strength, and geometric features. Railings must be capable of smoothly redirecting an impacting vehicle. Bridge railings should be evaluated using the AASHTO "Standard Specifications for Highway Bridges" as a guide for establishing a currently acceptable standard.
(2) Transitions: The transition from approach rail to bridge railing requires that the approach rail be firmly attached to the bridge railing. It also requires that the approach railing be gradually stiffened as it comes closer to the bridge railing. The ends of curbs and safety walks need to be gradually tapered out or shielded.
(3) Approach guardrail: The structural adequacy and compatibility of approach guardrail with transition designs should be determined. Rarely does the need for a barrier stop at the end of a bridge. Thus an approach guardrail with adequate length and structural qualities to shield motorists from the hazards at a bridge site needs to be installed. In addition to being capable of safely redirecting an impacting vehicle, the approach rail must also facilitate a transition to the bridge railing that will not cause snagging or pocketing of an impacting vehicle. Acceptable guardrail design suggestions are contained in the AASHTO Guide for Selecting, Locating, and Designing Traffic Barriers.
(4) Approach rail ends: As with guardrail ends in general, the ends of approach rails to bridges should be flared, buried, made breakaway, or shielded. Design treatment of guardrail ends is given in the AASHTO Guide for Selecting, Locating, and Designing Traffic Barriers.

The reporting of these features shall be as follows:

Code

0

Meaning

Inspected feature does not meet currently acceptable standards.* code "O" for a condition where guardrail is required and none is provided.

Item 36 - Traffic Safety Features (cont'd)

1 Inspected feature meets currently acceptable standards.* Code "l" for a condition where guardrail is not required.

N Not applicable.
*Currently acceptable standards should take into account traffic volume and speed, types of vehicles in the traffic stream, height of bridge, and underbridge conditions and activities. Thus, currently acceptable standards for a "farm to market" bridge railing and approach rail should usually differ from that for an expressway.

Digit Position
lst
2nd
3rd
4th

Feature Inspected

Bridge railing
Transitions
Approach guardrail
Approach guardrail terminal

Examples:
36 - 1011
36 - NNNN
Interpretation - All features meet currently acceptable standards except transitions.

- No traffic on bridge i.e., pedestrian bridge over highway or railroad bridge over highway.

Item 37-Blank

Item 38-Navigation Control I digit
Indicate for this item whether or not navigation control exists. The determination of whether or not a water course is navigable is made by the U. S. Coast Guard or the U. S. Army Corps of Engineers, whichever is applicable. Code "1" or "0" for Yes and No, respectively.

Item 39-Navigation Vertical Clearance
If Item 38 has been coded "l", record in feet the minimum clearance imposed at the site as measured above a datum that is specified on a navigation permit issued by a control agency. This measurement will show the clearance that is allowable for navigation purposes. In the case of a swing or bascule bridge, the vertical clearance should be measured with the bridge in the closed position (i.e., open to vehicular traffic). The vertical clearance of a vertical lift bridge should be measured with the bridge in the raised or open position. The measurement should be coded as a 3 -digit number. If Item 38 has been coded "0" code all zeros to indicate not applicable.

Examples: Actual \begin{tabular}{l}
150.0

20.6

\quad Record

150

21

\quad Code

150

021
\end{tabular}

Item 40 - Navigation Horizontal Clearance 4 digits
If Item 38 has been coded "l", record for this item the minimum horizontal clearance in feet. This measurement should be that shown on a navigation permit and may be less than the structure allows. Code the clearance as a 4-digit number. Code all zeros if Item 38 is coded "O".

Example: 95 ft . Code 0095
538 ft . 0538
1200 ft . 1200
Item 41 - Structure Open, Posted or Closed to Traffic 1 digit
This item provides information about the operational status of a structure. If bridge is closed to all traffic, code "C".

Note: For bridges closed because of "Condition" it is intended to correspond to a code of "0" or "1" in any one or all of Items 59, 60, or 62.
If bridge is open to traffic, but is load and/or speed posted, code "P". If bridge is open to traffic with no load or speed restrictions, code "A".

Item 42 - Type Service 2 digits
This item is intended to show the type of service on the bridge and the type of service under the bridge. The person recording data on the form for this item will also record the proper code at that time. The service types for this item will be indicated by a 2-digit code. The first digit is for the service on the bridge as follows:

1 Highway
2 Railroad
3 Pedestrian exclusively
4 Highway-railroad
5 Highway-pedestrian
6 Overpass structure at an interchange or second level of a multilevel interchange
7 Third level (Interchange)
8 Fourth level (Interchange)
9 Building or plaza
0 Other
The second digit will indicate the type of service under the bridge:
1 Highway, with or without pedestrian
2 Railroad
3 Pedestrian exclusively
4 Highway-railroad

Item 42 - Type Service (cont'd)
5 Waterway
6 Highway-waterway
7 Railroad-waterway
8 Highway-waterway-railroad
9 Relief
0 Other

Item 43 - Structure Type, Main
 3 digits

When recording the data the proper code should be entered at the same time. The code used will be for the main span. The first digit of the 3 -digit code will indicate type of design and kind of material and the second and third digits will indicate type of design and/or of construction.

TYPE OF STRUCTURE

lst Digit
1 Concrete
2 Concrete continuous
3 Steel
4 Steel continuous
5 Prestress concrete
6 Prestress concrete continuous
7 Timber
8 Masonry
9 Aluminum, W.I. or C.I.
0 Other

2nd and 3rd Digits
01 slab
02 Stringer/Multi-beam or girder
03 Girder and Floorbeam System
04 Tee Beam
05 Box Beam or Girders - Multiple
06 Box Beam or Girders - Single or Spread
07 Frame
08 Orthotropic
09 Truss - Deck
10 Truss - Thru
11 Arch - Deck
12 Arch - Thru
13 Suspension
14 Stayed Girder
15 Movable - Lift
16 Movable - Bascule
17 Movable - Swing
18 Tunnel
19 Culvert
00 Other

Examples:

Timber Through Truss	Code
Masonry Culvert	819
Steel Suspension	313
Continuous Concrete Multiple Box Girders	205
Simple Span Concrete Slab	101
Tunnel in Rock	018

Indicate with a 3 -digit code the type of structure in the approach spans to a major bridge or in the spans where the structural material is different. The codes are the same as for Item 43 preceding. However, code zeros if this item is not applicable. Use code " 20 " when no one type of design and/or construction is predominate in the approach units. If design and/or material is varied, code the first digit as "O".

Examples: Simple prestress concrete I-beam 502
Continuous concrete T-beam 204
Continuous deck truss 409
Item 45 - Number of spans in Main Unit 3 digits
Record the number and indicate with a 3-digit code the number of spans in the main or major unit. This item will include all spans of most bridges, the major unit only of a sizable structure, or a unit of material or design different from that of the approach spans.

Item 46 - Number of Approach Spans
 4 digits

Record the number and indicate with a 4-digit code the number of spans in the approach spans to the major bridge, or the number of spans of material different from that of the major bridge.

Item 47-Total Horizontal Clearance
 3 digits

The total horizontal clearance for the route identified in Item 5 should be measured and recorded to supply information that meets reporting requirements of FHPM 6-10-2. The clearance should be the available clearance measured between the most restrictive features -- curbs, rails, walls, or other structural features limiting the roadway (surface and shoulders). The measurement should be recorded and coded to the nearest tenth of a foot.

The purpose of this item is to give the available clearance for the movement of wide loads. This clearance has been identified in two ways, both of which are acceptable:
a. Roadway surface and shoulders.
b. Distance from face of pier (or rail around pier) to face of rail or slope at abutment.

Item 48 - Length of Maximum Span
4 digits
The length of the maximum span should be recorded. It shall be noted whether the measurement is center to center (c/c) or clear open distance (clr) between piers, bents, or abutments. Measurement shall be along centerline of bridge. For this item, code a 4-digit number to represent the measurement to the nearest foot.

50 feet	code	0050
117		0117
1,050		1050

Record and code a 6 -digit number to represent the length of the structure to the nearest foot. This shall be the length of roadway which is supported on the bridge structure. The length should be measured back to back of backwalls of abutments or from paving notch to paving notch.

Culvert lengths should be measured alona the \notin of roadway regardless of their depth below grade. Measurement should be made between inside faces of exterior walls.

Example:

50	feet	code
5421	\mathbf{n}	000050
333	\mathbf{n}	\mathbf{n}
101,235	\mathbf{n}	\mathbf{n}
		000321
		101235

Item 50 - Curb or Sidewalk Widths
6 digits
Record and code two contiguous 3 -digit numbers to represent the widths of the left and right curb or sidewalks to nearest tenth of a foot. This essentially is a 6-digit number, with the leftmost 3 digits representing the left curb or sidewalk and the rightmost 3 digits representing the right curb or sidewalk. "Left" and "Right" should be determined on the basis of direction of inventory.

Example:

Left side	Right Code	Code
None	8.3^{\prime}	000083
10.0	4.1^{\prime}	100041
8.3	None	083000
12.1	11.5	121115
None	None	000000
0.6	1.5	006015

Item 51 - Bridqe Roadway Width, Curb-to-Curb
4 digits
The information to be recorded is the most restrictive minimum distance between curbs or rails on the structure roadway. If the median is covered at the structure, the distance will be between the outside curbs or rails of the structure; i.e., the distance will include both roadways and the median widths. The measurement should be exclusive of flared areas for ramps; i.e., it should be the minimum or nominal width. A 4-digit code should be used to represent the distance to the nearest tenth of a foot.

Item 51 - Bridge Roadway width, Curb to Curb (cont'd)
Where traffic runs directly on the top slab (or wearing surface) of the culvert, e.g., an R / C box without fill, code the actual roadway width (curb-to-curb or rail-to-rail). This will also apply where the fill is minimal and the culvert headwalls affect the flow of traffic.

Where the roadway is on a fill carried across a pipe or box culvert and the culvert headwalls do not affect the flow of traffic, code 0000. This is considered proper inasmuch as a filled section over a culvert simply maintains the roadway cross-section.

Example:	36.0^{\prime}	wide	0360
110.13^{\prime}			
	66.37^{\prime}	0664	

Item 52 - Deck width, Out to Out
4 digits
Record and code a 4-digit number to show the out-to-out width to the nearest tenth of a foot. If the structure is a through structure, the number to be coded will represent the lateral clearance between superstructure members. The measurement should be exclusive of flared areas for ramps, i.e., it should be the minimum or nominal width.

Where traffic runs directly on the top slab (or wearing surface) of the culvert, e.g., an R / C box without fill, code the actual width (out-to-out). This will also apply where the fill is minimal and the culvert headwalls affect the flow of traffic.

Where the roadway is on a fill carried across a pipe or box culvert and the culvert headwalls do not affect the flow of traffic, code 0000. This is considered proper inasmuch as a filled section over a culvert simply maintains the roadway cross-section.

Item 53 - Minimum Vertical Clearance Over Bridge Roadway 4 digits
The information to be recorded for this item is the actual minimum vertical clearance over the bridge roadway, to any superstructure restriction, to the nearest inch. When no superstructure restriction exists above the bridge roadway, code 9999. When a restriction is 100 feet or greater, code 9912. A 4-digit number should be coded to represent feet and inches.

Examples:	$17^{\prime}-3^{\prime \prime}$	code 1703
$75^{\circ}-11^{\prime \prime}$	7511	
	No restriction	9999
	$115^{\prime \prime}$	9912

HORIZONTAL MEASUREMENTS

(2)

(2)

(2)

(1) Item $51 \sim$ Bridge Rdwy. width \sim curb to curb or rail to rail.
(2) Item $52 \sim$ Deck width~out to out.
(3) Item $50 \sim$ Curb or sidewalk width.

Record and code a 4-digit number to represent in feet and inches, the minimum vertical clearance from the roadway or railroad track beneath the structure to the underside of the superstructure. code zeros for structures over any other feature.

Item 55-Minimum Lateral Underclearance on Right 3 digits
If the feature beneath the structure is either a railroad or highway, code a 3 -digit number to represent the minimum lateral clearance on the right. If the feature is not a railroad or highway, code "999" to indicate not applicable. The lateral clearance should be measured to the nearest tenth of a foot from the right edge of the roadway, excluding shoulders, or from the centerline (between the rails) of the right-hand track in the case of a railroad, to the substructure unit -- pier, abutment, etco, a rigid barrier -- or to the toe of slope steeper than three to one. The uncerclearance measurements to be recorded will be the minimum after measuring the clearance in both directions of travel. In the case of a dual highway this would mean the outside clearances of both roadways should be measured and the smaller distance recorded and coded.

If two related features are below the bridge, measure both and record the lesser of the two. An explanation should be written as to what was recorded even though this information cannot be coded.

The presence of ramps is not considered in this item; therefore, the minimum lateral clearance on the right should be measured from the right edge of the through roadway.

```
Item 56 - Minimum Lateral Underclearance on left 3 digits
    (for divided highways, one-way streets and ramps)
```

The minimum clearance on the left (median side for divided highways) of the roadway beneath the structure regardless of the direction of travel is to be recorded. As was explained in Item 55, the clearance on the left in both directions of travel should be measured and the smaller distance recorded. The clearance is to be measured from the left edge of roadway, excluding shoulders, to the nearest substructure unit or any rigid median barrier. In the case of a dual highway where there is no obstruction in the median area, a notation of "open" should be recorded and "999" should be coded. For clearances greater than 99.8 ft , code "998". A 3-digit code to represent the distance to the nearest tenth of a foot should be used. If the item is not applicable, code with "000".

(1) Item 51 - Bridge Roadway width - Curb to curb or rail to rail
(2) Item 52 - Deck Width - Out to out
(3) Item 50 - Curb or sidewalk width

DIMENSIONS FOR OVERHEADS

(ITEMS $54 \& 55$)
EXAMPLE
II

ELEVATION

Item 55 - Minimum Lateral Underclearance $=8.2^{\prime}$ on Right
*Record and code the minimum Vertical Underclearance

MINIMUM LATERAL UNDERCLEARANCE - LT. \& RT.
(ITEMS 55 \& 56)
EXAMPLES

$=-$ LT. 15.1 RT. FOR 2-WAY TRAFFIC 15.1':T. 20.1'RT. FOR I-WAY TRAFFIC

心

- LT. 20.4'RT.

18.2'LT. 20.4'RT.

$=-L T$. 20.4' ${ }^{\prime}$ T.

--LT. 14.6' RT. FOR 2-WAY TRAFFIC 15.1 LT. 14.6 RT. FOR 1-WAY TRAFFIC

The kind of wearing surface material on the structure should be recorded. One of the codes given below should be used to represent the wearing surface material and type of protective system.

1 Concrete - no protective system
2 Asphaltic concrete - no protective system
3 Asphalt block
4 Grating - open or closed
5 wood planking
6 Asphaltic concrete with known membrane
(This should be recorded and coded from office records and not field determined)
7 Other
8 Asphaltic concrete with cathodic protection

Concrete With Coated Rebar Protective System

A Epoxy
B Galvanized
C Other coating

Concrete - Special Concrete Protective System

D Low slump dense concrete
E Polymer modified concrete
F Polymer impregnated concrete
G Internally sealed concrete
H Other type of special concrete
J Any combination of the above
N Not applicable
Example: A filled culvert or arch with the approach roadway section carried across the structure

COND ITION

Items 58 through 65, with the exception of Items 63 and 64, will be coded with a l-digit code that indicates the condition rating for the items.

Rating
Equivalent Rating Conditions
1978
1972
N Not applicable

9 New condition

8 Good condition - no repairs needed

7 Generally good condition potential exists for minor maintenance

6 Fair condition - potential exists for major maintenance

5 Generally fair condition potential exists for minor rehabilitation

4 Marginal condition potential exists for major rehabilitation

3 Poor condition - repair or rehabilitation required immediately

2 Critical condition - the need for repair or rehabilitation is urgent. Facility should be closed until the indicated repair is complete.

1 Critical condition - facility is closed. Study should determine the feasibility for repair
$0 \quad$ Critical condition - facility is closed and is beyond repair

Not applicable

New condition

Good condition ~ no repair necessary

Minor items in need of repair by maintenance forces

Major items in need of repair by maintenance forces

Major repair - contract needs to be let

Minimum adequate to tolerate present traffic, immediate rehabilitation necessary to keep open

Inadequacy to tolerate present heavy load warrants closing bridge to trucks

Inadequacy to tolerate any live load - warrants closing bridge to all traffic

Bridge repairable, if desirable to reopen to traffic

Bridge conditions beyond repair - danger of immediate collapse

CONDITION RATING (ITEM 58)

CONCRETE BRIDGE DECK EVALUATION

		Condition Indicators (\% deck area)			
Category Classification	Rating	Spalls	Delaminations	Electrical Potential	Chloride Content \#/CY
```Category #3 Light Deterioration```	9	none	none	0	0
	8	none	none	$\begin{aligned} & \text { none } \\ & >0.35 \end{aligned}$	$\begin{aligned} & \text { none } \\ & >1.0 \end{aligned}$
	7	none	<2\%	$\begin{gathered} 45 \% \\ <0.35 \end{gathered}$	$\begin{aligned} & \text { none } \\ & >2.0 \end{aligned}$
Category \#2   Moderate Deterioration	6	$2 \%$ spalls or sum of all deteriorated and/or contaminated deck concrete < 20\%			
	5	< $5 \%$ spalls or sum of all deteriorated and/or contaminated deck concrete 20 to $40 \%$			
Category \#l   Extensive   Deterioration	4	$>5 \%$ spalls or sum of all deteriorated and/or contaminated deck concrete 40 to 60\%			
	3	>5\% spalls or sum of all deteriorated and/or contaminated deck concrete $>60 \%$			
Structurally Inadequate Deck	2	Deck structural capacity grossly inadequate			
	1	Deck has failed completely Repairable by replacement only			
	0	Holes in deck - danger of other sections of deck failing			

Note: The specialized table can be used as a guide for evaluating deck conditions using different condition indicators.

When rating an item, it is not necessary that all of the previous condition be met to arrive at a numerical rating.

Those portions of bridges that are being supported or strengthened by temporary members will be rated based on their actual condition, i.e., the temporary members are not considered in the rating of the item.

The determination of which of the above ratings apply to each of the items will be based on an evaluation of all the relevant factors and information that are included in the detailed inspection reports. The rating chosen for each of these items will, in effect, be a composite of all of the relevant factors. It should be recognized that this will require judgment, particularly for those items where the ratings seem not to apply. It is recognized that there are unique situations, but, again, it is expected that some judgment will be used.

For additional explanation or definitions relating to these items, the AASHTO Bridge Manual and Bridge Inspector's Training Manual should be used.

These statements apoly equally to Items 67-72.

Item 58 - Deck
1 digit
This item refers to the riding surface, deck slab or plate, wearing surface, and any fixed or expansion joint devices. A defective expansion device, alone, should not cause a rating below "6".

The specialized table can be used as a guide for evaluating deck conditions using different condition indicators.

Item 59 - Superstructure $\quad$ l digit
This item includes all structural members, bearing devices and any drainaqe system.

In most all cases, the superstructure rating should not be influenced by the deck rating. Exceptions to this would include concrete slab, T-beam and box girder spans.

Item 60 - Substructure $\quad$ l digit
This item includes piers, abutments, piles, fenders, footing scour conditions, or other.

Item 61 - Channel and Channel Protection
1 diqit
Stream stability and condition of riprap, spur, dike, etc., are included in this item.

This item includes alignment, settlement problems, retaining wall stability, and structural integrity of culverts. Code "N" if the structure is not a culvert.

Item 63 - Estimate Remaining Life 2 dicits
The remaining life of the structure should be estimated based on all related and appropriate factors such as material, traffic volumes, age, and other. The estimate, which should be made using the best fudqment of a knowledgeable individual, should reflect the remaining life without major reconstruction. Use a 2-diait code.

Examoles:
4 years remaining code 04
15 years remaining 15

Item 64 - Operating Rating
3 diaits
This capacity rating, referred to as the operating rating, will result in the absolute maximum permissible load level to which the structure may be subjected for the vehicle type used in the rating. It should be emphasized that for HS loading, the total weight in tons of the entire vehicle should be coded, i.e, Eszo should be coded " 236 " even though the HS20 lane loading controls and is used to determine the rating, and HSl0 should be coded "218". A 3-diqit code will be used. The first digit will show the type of loading:

1 H loading	6	Type $3-3$ unit
2	HS loading	7 Railroad loading
3 Alternate Interstate Loading	8 Pedestrian or	
4	Type 3 unit	
5 Type 3-S2 unit	9	Grosecial loading

The first digit must be coded with an aporopriate code (l through 9). If the bridge is closed and/or will not carry any live load code the second and third diqits "00".

The second and third digits will give the gross loading in tons, except pedestrian and railroad loading. For railroad loading only, the second and third digits will give Cooper class or equivalent, if known, otherwise code "700". Code pedestrian loading as "800".

The use or presence of a temporary bridqe requires special consideration in coding. In such cases, since there is no permanent bridae, Items 64 and 66 should be coded as "900" even though the temoorary structure is rated for as much as full leqal load.

A bridge shored up or repaired on a temporary basis is considered a temporary bridge and the inventory and operating rating should be coded as if the temporary shoring were not in place.

Example: $3-$ s semi-trailer, 72000 pounds code 536
HS 30 254
Temporary bridge 900
Shored-up bridge 403*

* Load capacity without shoring

Item 65-Approach Roadway Alignment 1 digit
For this item, give the rating in relation to the effect on the use of the bridge.

Item - 66 Inventory Rating
3 digits
This capacity rating, for the vehicle type used in the rating, will result in a load level which can safely utilize an existing structure for an indefinite period of time. The statements and codes in Ttem 64 apply to this item also. This stress value shall not exceed but may be lower than the original design stress.

## APPRAISAL

The intention of the "Appraisal" section is to evaluate a bridge in relation to the highway system and functional classification of which the bridge is a part. The individual deficiencies in the various rated items need to be evaluated as to how they affect the bridge as a unit. The structure, then, would be compared to a new one built to the State's current standards for that particular type of road. On this basis, it is not always necessary to use the highest standard, but it is not recommended to use unduly low standards. It is recommended that AASHTO standards be followed for establishing design, minimum adequate and intolerable categories, unless the State's approved criteria differ from those in the AASHTO guides.

Iteas 67 through 72 will be coded with a one-digit code that indicates the appraisal rating for the item. The ratings and codes are:

[^0] priority of replacement
1 Immediate repair necessary to put back in service
0 Immediate replacement necessary to put back in service

Refer to the statements following condition ratings for Items 58 - 65.

Item 67 - Structural Condition
1 digit
Rate the overall structural condition, taking into account the major structural deficiencies. The Appraisal Rating is to be based partially on the Deck, Superstructure, Substructure condition ratings and the load carrying capacity.

The condition of the deck should have a relatively small influence on this appraisal rating and rarely should the appraisal rating for the structural condition be less than "4" due to a bridge deck problem. Exceptions to this would be concrete slab, T-beam and box girders. The minimum numerical rating of "4" is realistic if only the bridge deck needs replacement and the rest of the supporting superstructure is to remain in place. A lower rating could be justified if a significant amount of additional reconstruction or replacement is required on the rest of the superstructure to restore the load carrying capacity of the bridge.

The bridge is appraised not only on physical condition, but also on load carrying capacity, of the superstructure and substructure. Therefore, a well-maintained bridge may still be appraised at a "4" or "5" because the original design load or the inventory rating was less than today's standard.

Of first importance are those items whose malfunction or loss would adversely affect the integrity of the structure. For example, a loose expansion device, a pier cap that needs concrete work, or a damaged truss portal, should not classify a bridge as a "basically intolerable condition".

Item 68 - Deck Geometry
1 digit
Deck geometry is one of the more difficult items to appraise due to the varied standards and classes of roads used by the State on the different Federal-aid systems. The States are encouraged to establish basic criteria for evaluating deck geometry for these different systems and classes of roads. The key phrases to use in conjunction with the current State's standards in assigning an appraisal rating are "condition meeting minimum tolerable limits to be left in place" and "basically intolerable condition". This criteria developed from current design, minimum adequate and intolerable categories must be realistic to be meaningful.

One suggested beginning for the development of appraisal rating criteria, based only on the deck and approach roadway widths, is shown in the sketch below. The suggested values could be lowered if other factors (vertical clearance over the deck and horizontal or vertical clearance on the bridge) affect the flow of traffic.


Item 69 - Underclearances, Vertical and Horizontal 1 digit
This refers to vertical and horizontal underclearances from the through roadway to the superstructure or substructure units, respectively. Code " $N$ " unless the bridge is over a highway or railroad.

Item 70 - Safe Load Capacity
1 digit
Code rating in accordance with appropriate system criteria. It should be noted that the National Bridge Inspection Standards require the posting of load limits only if the maximum legal loads in the State produce stresses in excess of the operating rating stress level. However, a State may elect to use a lesser stress level, as low as the inventory rating level, to determine a safe load capacity for any or all of its bridges. This safe load capacity should be entered as Item 70. If the safe load capacity is such that posting is required, Item 70 shall be coded as 4 or less. If no posting is required, Item 70 shall be coded as 5 or greater, somewhat better than minimum adequacy.

This item evaluates the safe load of a bridge in comparison to the State legal load. In a way, it merely reflects the relationship between the load that may legally use the bridge and the desired capacity for bridges on the same highway system. It differs from the appraisal of the structural condition in that Item 67 uses the inventory or design rating, while the safe Load capacity may be based on any stress level between inventory and operating rating inclusive.

The use or presence of a temporary bridqe again affects the coding. The safe load rating should reflect either the actual capcity or the posted load, if any, of the temporary bridge. This also applies to bridges shored up or repaired on a temporary basis. This means the capacity rating will reflect the loads the bridge is actually carrying.

Item 71 - Waterway Adequacy 1 digit
This item describes the waterway adequacies. All scour erosion, condition of slope protection, stream capacity, etc., shoula be recorded. It is possible to have stream problems from slone protection, scour and the general condition with no apparent damage to the structure. These conditions should be relatea to their current affect on the structure and the potential hazard to the structure if the condition is not corrected. If there is no apparent damage or potential hazard, then the rating code should be "4" or hiqher. If some maior damage has resulted or a potentially hazardous condition exists, then the rating would be "3" or less depending upon the extent.

Item 72 - Appraoch Roadway Alignment i dicit
Code the rating based on the adequacy of the appraoch roadway aliqnment. This item identifies those bridges which do not function properly or safely due to the alignment of the approaches. A bridge would rarely, if ever, be replaced due to the appraoch roadway alignment, but a bridge should be classified as obsolete when its approaches are such that they can no longer safely service today's trafffic.

## PROPOSED IMPROVEMENTS

If Item 73 is coded with zeroes, then Items $74-88$ shall be coded with zeroes except Item 84 may be used for coding maintenance costs.

Item 73 - Year Needed 2 digits
The information to be recorded for this item will be the year improvements are estimated to be needed. The determination of the year can be made through the State's normal hiahway plaming procedures. A 2 -digit number will be coded to represent this information. Use zeroes to indicates "no answer" or "improvement not needed".

Example:
Improvement Needed Code
197070
$1975 \quad 75$
Not scheduled 00
None needed 00
Item 74 - Type of Service $\quad$ d diajt
Use the code shown in Item 42 to represent the type of service to be provided on the bridge.

The information to be recorded for this item will be the type of work proposed to be accomplished on the structure to improve it to the point that it will provide the type of service specified in Item 74. A 2-digit number should be coded to represent the proposed work type. The codes below are similar to those used in preparing Form PR-37 for highway safety improvements:

30 Widening existing bridge or other major structure
31 Replacement of bridge or other structure because of condition
32 Replacement of bridge or other structure because of relocation of road
33 Construction of new bridge or major structure (except to eliminate a railroad grade crossing or one for pedestrians only)
34 Construction of pedestrian over- or under-crossing
35 Other structure work
36 Strengthening
37 Rehabilitation
In addition, a 1 -digit suffix code should be used to indicate whether the proposed work is to be done by force account or by contract.
Contract code $\frac{1}{2}$
Owner's forces

Example: Strengthen existing structure by contract 361
Item 76 - Length of Improvement 6 digits
Code a 6-digit number that represents the length of the proposed improvement to the nearest foot. This length will not necessarily be the full length of the structure. However, the total length of the eligible approach improvement should be included.

Example:

Length of Improvement	Code	
250 feet	000250	
1200	"	001200
12345	012345	

Item 77 - Proposed Design Loading of Improvement 1 digit

Use the codes as specified in Item 31 to show the design loading proposed for the improvement.

Item 78 - Proposed Roadway Width 4 digits

Code a 4-digit number to represent the width of the proposed reconstruction roadway to the nearest foot. The width will be from curb to curb or from face to face of rails if the curbs are 9 inches or less in width.

Code a 2-digit number to indicate cne number of lanes proposed as part of the improvement.

Item 80 - Design ADT $\quad 6$ digits
Code a 6-digit number to represent the ADT which controls the design of the new improvement. The ADT should be to the nearest ten and coded as shown in Item 29.

Item 81 - Year of Estimated ADT 2 digits
Code a 2-digit number to represent the last two digits of the year of the estimated $A D T$ given in Item 80.

Item 82-Year of Proposed Adjacent Roadway Improvements 2 digits
Code a 2-digit number to represent the last two digits of the year in which it is expected that improvements to the roadway approaches to the bridge will take place.

Item 83 - Type of Proposed Adjacent Roadway Improvements 1 digit
Code a l-digit number to represent the type of improvement proposed for approaches to the bridge. Use the following codes:

0 Not applicable
1 Resurface
2 Reconstruction
3 Widening
4 Shoulder improvements
5 Other (explain in remarks)
Item 84-Cost of Improvements
5 digits
Code a 5-digit number to represent the total cost of the proposed improvements to thousands of dollars.

If the cost coded is for a replacement structure, it may be larger than the sum of Items 85 through 88 , since it includes the necessary eligible approach work and other miscellaneous work.

This item may also be used for coding maintenance costs.
Example:

Cost of Improvement	Code
$\$ 55,850$	00056
250,000	00250
$7,451,233$	07451

Code as a 3 -digit number to represent the estimated cost in thousands of dollars of the preliminary engineering.

Item 86 - Demolition
3 digits
Code as a 3 -digit number to represent the estimated cost in thousands of dollars to demolish the existing structure.

Item 87-Substructure
5 digits
Code as a 5-digit number to represent the estimated cost in thousands of dollars to construct the substructure of the proposed improvement.

Item 88 - Superstructure
5 digits
Code as a 5-digit number to represent the estimated cost in thousands of dollars to construct the superstructure of the proposed improvement.

## Item 89 -

Item no longer used. (Originally used with Bridge Replacement Program.)

Item 90 - Inspection Date
6 digits
Code the date a structure is inspected. The item should be coded in the form:

$M M$	$D D$	$Y Y$
(month	day	year)

## REMARKS

In addition to any other applicable statements, remarks must include a statement of action taken, if any, pursuant to findings of inspection.

## STRUCTURE INVENTORY \& APPRAISAL SHEET



## PROPOSED IMPROVEMENTS



## Appendix A

## Hiqhway Bridge Replacement and Rehabilitation Proqram Sufficiency Rating Formula

The sufficiency ratina formula described herein is a method of evaluating factors, which are indicative of bridge sufficiency to remain in service. The result of this method is a percentage in which 100 percent would represent an entirely sufficient bridge and zero percent would represent an entirely insufficient or deficient bridge.

## SUMMARY OF SUFEICIENCY RATING FACTORS


4. SPECIAL REDUCTIONS $S_{4}=13 \%$ Max.
19 Detour Leneth
36 Traffic Safety Features
43 Structure Tyde, Main

SUFFICIENCY RATING $=S_{1}+S_{2}+S_{3}-S_{4}$

Sufficiency Rating shall not be $\langle 0$ nor $\rangle 100$

## SUFFICIENCY RATING FORMULA

1. STRUCTURAL ADEQUACY AND SAFETY ( $55 \%$ maximum)

If \#59 (Superstructure Rating) or \#60 (Substructure Rating) is:

$$
\begin{array}{l|l}
\leq 2 \\
=3 \\
=4 & A=55 \% \\
& B=40 \% \\
C=25 \% \\
D=10 \%
\end{array}
$$

If \#59 and \#60 $=N$ and \#62 (Culvert Rating) is:

$\leq 2$	$\mathrm{E}=55 \%$
$=3$	$\mathrm{~F}=40 \%$
$=4$	$\mathrm{G}=25 \%$
	$\mathrm{H}=10 \%$

Reduction for Load Capacity:
a) Calculate AIT (Adjusted Inventory Tonnage) as follows:

When the lst digit of \#66 = $1, A I T=$ the 2 nd $\& 3$ rd digits multiplied by 1.56 ;

When the lst digit of $\# 66=2$, AIT $=$ the 2 nd $\& 3$ radigits multiplied by 1.00 ;

When the lst digit of $\# 66=3$, AIT $=$ the 2 nd $\& 3$ rd digits multiplied by 1.56 ;

When the lst digit of $\# 66=4, A I T=$ the 2 nd \& 3 rd digits multiplied by $1.01 ;$

When the lst digit of $\# 66=5, A I T=$ the 2 nd \& 3 rd digits multiplied by 0.77;

When the lst digit of $\# 66=6, A I T=$ the 2 nd $\& 3$ rd digits multiplied by 0.67 ;

When the lst digit of $\# 66=9, A I T=$ the 2 nd $\& 3$ rd digits multiplica by 1.00 ;
b)

$$
I=(36-A I T)^{1.5} \times 0.2778
$$

Note: If $(36-A I T) \leq 0$, then $I=0$. Limits: $55 \%$ to $0 \%$
$S_{1}=55-(A+B+C+D+E+F+G+H+I)$
S1 shall not be less than $0 \%$ nor greater than 55\%

2. SERVICEABILITY AND FUNCTIONAL OBSOLESCENCE ( $30 \%$ maximum)

If \#58 (Deck Condition) is:	$\begin{aligned} & \leq 3 \\ & \leqq 4 \\ & =5 \end{aligned}$	$\begin{aligned} & A=5 \% \\ & A=3 \% \\ & A=1 \% \end{aligned}$
If \#67 (Structural Condition) is:	$\begin{aligned} & \leq 3 \\ & =4 \\ & =5 \end{aligned}$	$\begin{aligned} & B=4 \% \\ & B=2 \% \\ & B=1 \% \end{aligned}$
If \#68 (Deck Geometry) is:	$\begin{aligned} & \leq 3 \\ & =4 \\ & =5 \end{aligned}$	$\begin{aligned} & C=4 \% \\ & C=2 \% \\ & C=1 \% \end{aligned}$
If \#69 (Underclearances) is:	$\begin{aligned} & \leq 3 \\ & =4 \\ & =5 \end{aligned}$	$\begin{aligned} & D=4 \% \\ & D=2 \% \\ & D=1 \% \end{aligned}$
If \#71 (Waterway Adequacy) is:	$\begin{aligned} & \leq 3 \\ & \equiv 4 \\ & =5 \end{aligned}$	$\begin{aligned} & E=4 \% \\ & E=2 \% \\ & E=1 \% \end{aligned}$
If \#72 (Approach Road Alignment) is:	$\begin{aligned} & \leq 3 \\ & \equiv 4 \\ & =5 \end{aligned}$	$\begin{aligned} & \mathrm{F}=4 \% \\ & \mathrm{~F}=2 \% \\ & \mathrm{~F}=1 \% \end{aligned}$

$J=(A+B+C+D+E+F)$
$J$ shall not be less than $0 \%$ nor greater than $13 \%$.

Width of Roaciway Insufficiency (15\% maximum)
Note: \#l applies to all bridges;
\#2 applies to l-lane bridges only;
\#3 applies to 2 or more lane bridges;
\#4 applies to all except l-lane bridges.
and
X (ADT/Lane) $=\# 29(A D T) \div$ First 2 digits of \#28 (Lanes)
$Y($ Width $/$ Lane $)=\# 51$ (Bridge Rdwy. Width) $\div$ First 2 digits of \#28
\#1 - Use when the last 2 digits of \#43 (Structure Type) are not 19 (Culvert) :

If (\#51 + 2 Ft.) <\#32 (Approach Roadway Width) $G=5 \%$
\#2 - For l-lane bridges only.
If the first two digits of \#28 (Lanes) are equal to 01 and:

If $\mathrm{Y}<14$	$\mathrm{H}=15 \%$
If $\mathrm{Y} \geq 14<18$	$\mathrm{H}=15\left(\frac{18-Y}{4}\right) \%$
If $\mathrm{Y} \geq 18$	$\mathrm{H}=0 \%$


\#4 - For all except l-lane bridges.

If $Y<9$ and $X>50$	$H=15 \%$
If $Y<9$ and $X \leq 50$	$H=7.5 \%$
If $Y \geq 9$ and $X \leq 50$	$H=0 \%$

If $X>50$ but $\leq 125$ and:

$\mathrm{Y}<10$	$\mathrm{H}=15 \%$
$\mathrm{Y} \geq 10<13$	$\mathrm{H}=15\left(\frac{13-\mathrm{Y}}{3}\right) \%$
$\mathrm{Y} \geq 13$	$\mathrm{H}=0 \%$

If $X>125$ but $\leq 375$ and:

$$
\begin{array}{ll}
\mathrm{Y}<11 & \mathrm{H}=15 \% \\
\mathrm{Y} \geq 11<14 & \mathrm{H}=15\left(\frac{14-Y}{3}\right) \% \\
\mathrm{Y} \geq 14 & \mathrm{H}=0 \%
\end{array}
$$

If $X>375$ but $\leq 1350$ and:

$\mathbf{Y}<12$	$H=15 \%$
$\mathbf{Y} \geq 12<16$	$H=15\left(\frac{16-Y}{4}\right)$
$\mathbf{Y} \geq 16$	$H=0 \%$

If $X>1350$ and:

$$
\begin{array}{ll}
\mathbf{Y}<15 & H=15 \% \\
\mathbf{Y} \geq 15<16 & H=15(16-Y) \% \\
Y \geq 16 & H=0 \%
\end{array}
$$

"Width of Roadway Insufficiency" shall not be less than $0 \%$ nor greater than $15 \%$.

Vertical Clearance Insufficiency - ( $2 \%$ maximum)
If \#12 (Defense Road) $>0$ and:

If \#12 = 0 and:

$$
\begin{array}{ll}
\# 53 \geq 1400 & I=0 \% \\
\# 53<1400 & I=2 \%
\end{array}
$$

"Vertical Clearance Insufficiency" shall not be less than $0 \%$ nor greater than $2 \%$.

$$
S_{2}=30-[J+(G+H)+I] \quad \begin{aligned}
& \text { where } J \text { shall not } \\
& \text { exceed } 13 \% \text { and }(G \\
& + \text { H) shall not } \\
& \text { exceed } 15 \% .
\end{aligned}
$$

$\mathrm{S}_{2}$ shall not be less than $0 \%$ nor greater than $30 \%$.

3. ESSENTIALITY FOR PUBLIC USE ( $15 \%$ maximum)
$K=\frac{S_{1}+S_{2}}{85}$
$A=\frac{\# 29(A D T) \times \# 19 \text { (Detour Length) }}{200,000 \times K} \times 15$
A shall not be
$\langle 0 \%$ nor $>15 \%$.
If \#12 is $>0$
$B=2 \%$
If \#12 $=0$
$\mathrm{B}=0 \%$
$S_{3}=15-(A+B)$
$\mathrm{S}_{3}$ shall not be less than $0 \%$ nor greater than $15 \%$.
4. SPECIAL REDUCTIONS (Use only when $s_{1}+s_{2}+s_{3} \geq 50$ )
(a) Detour Length Reduction:

$$
A=(\# 19)^{4} \times\left(5.205 \times 10^{-8}\right) \quad \text { Max. }=5 \%
$$

(b) If the 2nd and 3rd digits of \#43 (Structure Type, Main) are $10,12,13,14,15,16,17$, then;

$$
B=5 \%
$$

$\begin{array}{rlrl}\text { (c) If } 2 \text { digits of } \# 36 \\ \text { If } 3 \text { digits of } \# 36 \\ \text { If } 4 \text { digits of } \# 36 & & C=0 & C=1 \% \\ & & =0 & C=2 \% \\ & =0 & C=3 \%\end{array}$
$S_{4}=A+B+C$

> SUFFICIENCY RATING $=S_{1}+S_{2}+S_{3}-S_{4}$ and Sufficiency Rating shall not be $<0$ nor $>100$

## SPECIAL REDUCTION FOR DETOUR LENGTH

$$
\begin{aligned}
& y=m x^{+} \\
& m=5.205 \times 10^{-8} \\
& y=\text { Reduction } \\
& x=\text { Detour Length }
\end{aligned}
$$



1. Structural Adequacy and Safety

$$
\begin{aligned}
& A, B, D, E, F, G, H=0 \\
& C=25 \% \\
& I=[36-(1.56)(20)]^{1.5}(0.2778)=2.9 \\
& \quad S_{I}=55-25-2.9=27.1
\end{aligned}
$$

2. Serviceability and Functional Obsolescence

$$
\begin{aligned}
& A=1 \%, B=2 \%, C=4 \%, D=0, E=2 \%, F=2 \% \\
& J=(1+2+4+2+2)=11 \%
\end{aligned}
$$

$X=375, Y=10.75$
\#1 $(21.5+2)>23 \quad G=0$
\#2 - Not Applicable
\#3 - Not Applicablc
\#4 $\mathrm{X}=375, \mathrm{Y}=10.75 \mathrm{H}=15 \%$

$$
\begin{aligned}
& I=0 \\
& S_{2}=30-[11+(0+15)+0]=4.0
\end{aligned}
$$

3. Essentiality For Public Use

$$
K=\frac{27.1+4.0}{85}=0.36
$$

$$
A=\frac{750 \times 40}{200.000 \times 0.36} \times 15=6.2
$$

$B=0$
$s_{3}=15-(6.2+0)=8.8$
4. Special Reductions

$$
s_{1}+s_{2}+s_{3}=27.1+4.0+8.8=39.9<50
$$

$$
\therefore s_{4}=0
$$

SUFFICIENCY RATING $=27.1+4.0+8.8=39.9$

## STRUCTURE INVENTORY \& APPRAISAL SHEET




[^0]:    N Not applicable
    9 Conditions superior to present desirable criteria
    8 Conditions equal to present desirable criteria
    7 Condition better than present minimum criteria
    6 Condition equal to present minimum criteria
    5 Condition somewhat better than minimum adequacy to tolerate being left in place as is

    4 Condition meeting minimum tolerable limits to be left in place as is
    3 Basically intolerable condition requiring high priority of repair

